
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Program Model Checking as a New Trend

Klaus Havelund1, Willem Visser2

1 Kestrel Technology, NASA Ames Research Center, Moffett Field, CA 94035, USA, e-mail: havelund@email.arc.nasa.gov
2 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA, e-mail: wvisser@email.arc.nasa.gov

The date of receipt and acceptance will be inserted by the editor

Abstract. This paper introduces a special section of
the STTT journal containing a selection of papers that
were presented at the 7th International SPIN workshop,
Stanford, August 30 - September 1, 2000. The workshop
was named SPIN Model Checking and Software Verifica-
tion, with an emphasis on model checking of programs.
The paper outlines the motivation for stressing software
verification, rather than only design and model verifi-
cation, by presenting the work done in the Automated
Software Engineering group at NASA Ames Research
Center within the last 5 years. This includes work in
software model checking, testing like technologies and
static analysis.

1 Introduction

This special section contains a selection of five papers
that were amongst the 17 papers and six invited talks
and tutorials presented at the 7th International SPIN
workshop, arranged at Stanford University, California,
USA, August 30 - September 1, 2000. The original pro-
ceedings were published in Lecture Notes in Computer
Science volume 1885, Springer, titled: SPIN Model Check-
ing and Software Verification. Model checking is a tech-
nique for exploring all possible execution sequences of a
system of interacting concurrent components. Such sys-
tems may interact in unexpected ways due to unpre-
dictable speeds of the various components, and are hence
extremely difficult to test using traditional testing tech-
niques. The many ways components can interact usu-
ally leads to a large search space, and model checkers
typically incorporate various techniques for conquering
this complexity. The SPIN model checker [36], for which
Gerard Holzmann recently received the ACM Software
System Award, has a large user community, and the

SPIN workshop is a forum for this community, and gen-
erally for researchers with interest in automata-based,
explicit state model checking technologies for the analy-
sis and verification of asynchronous concurrent and dis-
tributed systems. The first SPIN workshop was held in
October 1995 in Montreal. Subsequent workshops were
held in New Brunswick (August 1996), Enschede (April
1997), Paris (November 1998), Trento (July 1999), and
Toulouse (September 1999).

Traditionally, the SPIN workshops present papers on
extensions and uses of SPIN. As an experiment, SPIN
2000 was broadened to have a slightly wider focus than
previous workshops in that papers on software verifica-
tion were encouraged, as reflected in the name of the
workshop: SPIN Model Checking and Software Verifica-
tion. In this paper we shall try to explain the background
for emphasizing software verification. We will do this by
outlining in the following sections some of the research
that has taken place in our own verification research
group at NASA Ames Research Center throughout the
last years since its start in 1997, together with some
thoughts on the future. The verification group is part of
the Automated Software Engineering (ASE) group, the
purpose of which is to develop software technology for
supporting software development within NASA. The se-
lected papers will be introduced and related to this work
in special subsections throughout the presentation.

By software verification we mean model checking of
source code (or the corresponding object code it is com-
piled into). This is in contrast to analysis of designs or
models of software, which are usually much more ab-
stract. That is, we suggest to focus attention on the real
beast in all its complexity. Although this view at the
time of writing seems to have caught on as a popular re-
search topic, at the time leading up to the workshop, this
subject was only investigated by few research groups, in-
cluding our own. Amongst the other work in this domain
at the time was [4] and [11], and in fact only [4] was



2 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

known to us when we started. Now SPIN has a C inter-
face [37] and can hence model check C programs, and
other tools exist as will be elaborated in later sections.

Although targeting source code may appear as just
worsening the problem of state space explosion usually
associated with model checking, we believe that there are
some benefits from such an approach, as we shall out-
line here. Note, that we do not suggest that design or
model verification is uninteresting - far from. However,
our experience throughout several experiments during
1996 and 1997 at NASA as well as with a Danish au-
dio video company lead to the (folklore) conclusion that
programmers often write code without first writing a de-
tailed design. We concluded that if formal methods were
to be adopted at NASA within a shorter time frame, we
would have to provide a technology that could analyze
real programs.

One can argue that programmers should be urged to
write formalized designs that can be analyzed. However,
a point of view may be that in order for a design to con-
tain enough information to be useful for formal analysis,
the design may approach the final system in complexity,
in which case programmers will avoid the extra work and
just write the code directly. This fact may be the reason
why software developers do not create detailed designs
as do engineers in other disciplines. The distance for ex-
ample between a design of a bridge, and the bridge itself,
is enormous, and therefore the design is well motivated.
In case the code is generated from the design, the design
becomes the code, and we are left with code analysis any-
way. Even a mainly graphical design language such as
UML raises the issue of program verification since UML
designs can contain code fragments, and can evolve into
fully fledged programs.

This new trend brings new challenges into focus, such
as dealing with object oriented dynamic memory alloca-
tion and garbage collection, program libraries, and, last
but not least, an increased state space to explore. These
problems require new approaches, amongst them per-
haps the most challenging being how to deal with really
big state spaces. Techniques to deal with this include
for example static analysis, abstraction, guided search,
and intelligent testing techniques in between complete
state space exploration such as model checking on the
one hand, and partial search, such as simulation on the
other. We believe that this is an interesting research di-
rection for the formal methods community for the follow-
ing reasons. First of all, if tools can handle real programs,
the user community will increase dramatically. Second,
programming languages often offer quite convenient no-
tations for expressing solutions to problems, compared to
modelling languages. Third, by trying to handle real pro-
grams, the scalability issue becomes much more press-
ing, and will therefore spawn new research to develop
more scalable solutions that can even help in design ver-
ification. Fourth, and finally, researchers from different
groups that develop model checkers for the same pro-

gramming language will be able to exchange examples
and compare technologies very easily.

The following sections proceed as follows. In Section
2 we describe a case study where SPIN was applied to the
analysis of a space craft controller, successfully identify-
ing several errors. This and other previous case studies
lead to the development of the Java PathFinder 1 sys-
tem: a translator from Java to the PROMELA language
of SPIN, described in Section 3. This system allows to
model check programs written in a non-trivial subset
of Java. Section 4 describes another case study where
SPIN was applied to analyze an avionic real-time oper-
ating system. Java PathFinder 1 was limited in the sense
that it could not handle the Java libraries well. Translat-
ing the libraries would give too large PROMELA models
and writing stubs for them would require an enormous
amount of work. Hence it was decided to model check
Java byte code instead, based on a homegrown Java Vir-
tual Machine. This effort is described in Section 5. Sec-
tion 6 identifies some technologies that are regarded as
essential to make model checking of software work. This
includes topics such as abstraction and search heuris-
tics. One of our more recent research topics is runtime
verification, as described in Section 7, where scalability
is achieved by just examining single execution traces.
Lastly, some final thoughts are given in Section 8.

2 The Remote Agent Example

2.1 Description of the Remote Agent

The first verification case study that was performed in
the newly created Automated Software Engineering group
at NASA Ames was the application of the SPIN model
checker to analyze part of the Remote Agent space craft
controller [29,28]. The Remote Agent is a software sys-
tem based on artificial intelligence techniques such as
planning and scheduling. It is meant to execute on board
the space craft and it’s purpose is to take over part of the
operations normally carried out on ground during the
operation of a space craft, thereby relieving ground per-
sonal from micro-managing the space craft, and instead
focus on higher level goal management. The Remote
Agent was tested on board the Deep-Space 1 space craft
during May 1999. The space craft itself was launched
on October 24, 1998. It was the first demonstration of a
complete take over of a space craft by an artificial intel-
ligence based software system in NASA’s history.

The Remote Agent consists essentially of three mod-
ules: a Planner, an Executive, and a Diagnosis module.
The standard operation of the space craft using this sys-
tem may proceed as follows: a goal is created by ground
personal, for example “move towards the comet and take
a picture”, and up-linked to the space craft. The plan-
ner on board will then from this goal generate a plan
using a set of sophisticated search algorithms, based on



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 3

a static predefined model of what the possible transi-
tions are relative to a current state. The result is a plan
specifying a sequence of tasks for each relevant compo-
nent on board the spacecraft, that must be performed in
succession in order to achieve the goal. Tasks from differ-
ent components may run in parallel according to certain
time constraints generated as part of the plan. The plan
is then sent to the Executive, which executes the plan,
thereby operating the space craft. The diagnosis module
constantly monitors the behavior of the craft and com-
pares the observed behavior to the expected, signaling
the executive, or in worst case the planner, if something
goes wrong, whereafter proper action can be taken to
repair the situation.

The Executive was selected for the verification case
study, and in particular the language named Esl (Exec-
utive Support Language), implemented as an extension
to multi-threaded Common Lisp for supporting the ex-
ecution of tasks. Esl is essentially an API for multi-task
programming similar to POSIX threads, but with extra
domain specific functionality.

2.2 Model Checking

The Esl module consisted of approximately 3000 lines
of code. Initially we had a choice between various possi-
ble verification tools, mainly theorem provers and model
checkers. We quickly decided that theorem proving would
be too time consuming for an experiment limited to a
couple of months of duration, and our goal was to find
errors, and not to prove complete correctness. We de-
cided to use SPIN since it already had a programming
language like syntax and since it allowed dynamic pro-
cess creation, one of the features of the system.

From the 3000 lines of LISP code we extracted ap-
proximately 500 lines of PROMELA code, represent-
ing an abstraction of the original system. The abstrac-
tion was made based on informal reasoning, focusing
attention on a lock table that all threads were access-
ing. By asking engineers, two properties were formu-
lated in SPIN’s Linear Temporal Logic (LTL) and ver-
ified against the model. Neither of the two properties
turned out to be satisfied by the model, and a total of 4
classical concurrency errors were revealed, each of which
had a counterpart in the original code, as confirmed by
the programmer. They were classical concurrency errors
in the sense that they could occur due to totally unex-
pected interleavings of tasks, interleavings that had not
been detected by traditional testing. As an example, one
of these violations was caused by a missing critical sec-
tion around a piece of code of the form:

if(no_new_events())
goto_sleep()

This would cause the executing thread to execute the
condition no new events(), and in case it evaluated to
true, decide to go to sleep. However, if a new event oc-
curred in between the condition and the actual call of
goto sleep, the thread would miss the new event and
just go to sleep.

The programmer of the system was very impressed
by these results, as documented in [29]. As an interest-
ing aftermath, when the Remote Agent was activated on
May 18, 1999, an anomaly occurred: thrusting did not
turn off as requested. The experiment was immediately
terminated from ground and put in stand-by mode for 5
hours until the reason for the error had been detected. It
turned out to be a missing critical section around a piece
of code similar the one above, but in a different part
of the system that had not been analyzed with SPIN.
One thread would then block, missing an event, and the
whole system would eventually deadlock. We had hence
demonstrated to NASA that model checking successfully
can find errors that can damage a mission.

2.3 Lessons Learned

The experiment was regarded as successful by all in-
volved parties. Not only had 4 errors been found that
were very hard to find with normal testing, one of these
actually also demonstrated a major design flaw in the
system. Furthermore, one of the errors was later rein-
troduced in another sibling module, causing deadlock
during flight that put the space-craft in stand-by mode
for several hours.

However, observing the verification process, the re-
sult was not so encouraging. Twelve man-weeks (two re-
searchers during 6 weeks) were spent on creating the 500
line PROMELA model from the 3000 lines of LISP code.
The LISP code was undocumented and used many layers
of macros, which made it difficult to read. Just under-
standing the code in order to make a proper translation
was definitely one of the problems. A second problem
was to define the mapping from the very powerful LISP
language to the less powerful PROMELA language. A
third problem was to decide what parts to translate and
for those parts, whether the translation should be one-to-
one, or some abstraction. It was clear to us that the first
two problems (understanding and translation) were the
hardest, while the abstraction problem strangely enough
was less of a problem. This gave us the hope that if
the translation could be automated, and the verification
was performed by the programmer himself, using some
kind of semi-automated abstraction support tool, then
the experiment could potentially have been done within
a single day.

Another important source of experience supporting
the construction of a software model checker was the ap-
plication of the UPPAAL real-time model checker [39]
to analyze two audio video systems developed by the
Danish audio video company Bang & Olufsen [26,25].



4 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

The verification effort was very successful in one occasion
([26]) in that a 10 year old known, but unexplained, bug
was found and explained. However, as was the case with
the Remote Agent study, some time was spent on manu-
ally creating a model from the program, in one case 2500
lines of assembler code. As a result of these experiences
we decided to create a translator from a programming
language to PROMELA, as described in the next sec-
tion. The first idea of developing a Java model checker
was in fact conceived during the work with UPPAAL in
1997.

3 Java PathFinder 1

3.1 Rationale

As outlined in the previous section, a series of experi-
ments with applying existing model checkers in the mod-
elling and analysis of software systems had lead to the
observation that it would be extremely useful if model
checkers could analyze programs written in traditional
programming languages. We therefore decided to de-
velop a model checker for some well chosen programming
language, and the choice fell on Java.

There are several objective reasons for choosing Java.
First, it was viewed as important that the chosen lan-
guage was object oriented since that was the current
trend in programming language design. Second, the lan-
guage should also be popular in order to gain a broader
user community. These criteria ruled out C (not object
oriented) and LISP (not popular). C++ was regarded as
too complicated for formal analysis due to its rich syn-
tax and capabilities for operating with pointers. Java was
hence the obvious choice for the above reasons. However,
NASA currently operates mostly in C, and in some cases
in C++. LISP was only used for the Remote Agent ex-
periment and has been abandoned for future missions.
This gave us the burden of arguing going for Java. Our
response would be that Java would be good for proto-
typing the ideas, and potentially Java could become the
language of the future. As it turns out, experiments are
currently undertaken within NASA to evaluate Java as
a possible replacement of C and C++. The occurrence
of Real-Time Java may have an important role to play
in this decision.

The development of a model checker for Java could
again take a number of avenues. One could either write a
model checker from scratch for Java, or write a translator
from Java to the modelling language of some existing
model checker. The SPIN model checker was early on
regarded as either the target for a translation, or at least
an example of how one could write a new model checker
for a programming language. The PROMELA language
has a high resemblance to a programming language. One
of the salient features of PROMELA is the capability of
dynamic process creation. We early on imagined that

this could be used to model dynamic thread creation as
existing in Java.

It was finally decided to write a translator from Java
to PROMELA, the modelling language for SPIN, since it
would potentially require less work than writing a model
checker from scratch. The project was named Java
PathFinder (JPF) [30], later to be named Java PathFinder
1 (JPF1), after the Mars PathFinder rover that explored
Mars in 1997. The goal was to produce a prototype rel-
atively fast in order to evaluate the potential of model
checking real programs. At the time, only a source-to-
source code translation was considered. Java source code
is compiled into byte code by the compiler, and hence an
alternative approach would have been to translate byte
code to PROMELA. This latter approach was, however,
hardly considered at the time, possibly reflecting a belief
that byte code verification would be too inefficient with
too many detailed interleavings between single byte code
instructions. As it turned out, as described in Section 5,
when we later concluded lessons learned from the JPF1
project, byte code verification actually turned out to be
a very viable solution.

3.2 Design and Implementation

JPF1 translates a Java program into a PROMELA model.
The Java program can contain assertions as calls to an
assert method, which will be translated into calls of
PROMELA’s assert statement. The resulting PROMELA
model can then be checked for assertion violations and
deadlocks. There is also a possibility, of course, to check
general LTL formulae on the resulting PROMELA model,
although this requires some minimal knowledge about
the generated PROMELA code. Error traces produced
by SPIN are visualized using SPIN’s message sequence
charts, assuming that special print statements have been
inserted into the code. JPF1 does not apply any analysis
to reduce the state space of the generated model. Hence,
the Java program must have a finite and tractable state
space.

The translator is developed in LISP, and comprises
6000 lines of code. We have used an already existing
parser front-end written in Moscow-ML by Peter Ses-
toft (the Royal Veterinary and Agricultural University in
Denmark), ported from a Standard-ML version written
by Olivier Brunet and Gordon Woodhull (University of
California, Berkeley, USA). The parser handles Java 1.0,
an early version of Java. As a result, the translator trans-
lates a subset of Java 1.0. However, a significant subset of
Java 1.0 is supported by JPF1. This includes: class def-
initions with class variables, fields and methods; simple
data types such as integers, booleans, object references
and arrays of all these types; class inheritance; dynamic
object creation; threads and synchronization primitives
such as synchronized statements and the wait and
notify methods; exceptions and thread interrupts; and



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 5

finally most of the standard programming language con-
structs such as assignment statements, conditional state-
ments and loops. Amongst the features not translated
are: packages (the parser could only read one package),
overloading, method overriding, recursion (since method
calls are translated by inlining), strings, floating point
numbers, some thread operations like suspend and resume,
and some control constructs, such as the continue state-
ment. Furthermore, arrays are not objects as in Java
since they are modelled using PROMELA’s own arrays
to obtain an efficient verification. Finally, but perhaps
most importantly, the translator can not translate the
pre-defined class library, including for example numer-
ous container classes. In spite of these omissions, JPF1
at the time translated more of Java than any to us known
other similar tool.

A key design issue was how to translate dynamic
object creation. Dynamic object creation is handled by
for each class to define an array of fixed size, each en-
try of which corresponds to the data area of the class.
Hence, for example if a class has two variables x and y,
then an array of records containing these two variables
is generated. The size of the array sets a limit on how
many objects of the class can be generated, and must
be re-defined by the user if the default value is not sat-
isfactory. An index variable always points to the next
free object. An object reference is a pair consisting of
the name of the class and an index variable pointing
into the corresponding array. Another key issue was the
translation of dynamic thread creation and the various
thread synchronization constructs. Threads are natu-
rally mapped to PROMELA processes. The key synchro-
nization constructs, such as the synchronized methods,
the synchronized statement, and wait and notify, are
handled by introducing extra variables in the data area
for each object (in the array corresponding to the class).
For example, locking an object is modelled by intro-
ducing a LOCK variable, which by default contains null,
and which is assigned the thread id of any thread lock-
ing the object. Another thread cannot access the ob-
ject in case this variable differs from null. Similarly,
a PROMELA zero-capacity (synchronous) channel vari-
able is introduced to model the wait and notify opera-
tions: waiting corresponds to executing a ”?” operation
on the channel and a notification corresponds to execut-
ing a ”!”. A major feature of the translator is that it
can handle exceptions and the finally construct. Ex-
ceptions are translated by using the unless construct
of PROMELA1 A special variable EXN is introduced in
each thread object, holding the default null value. An
exception (which is an object in Java) is thrown by stor-
ing the exception object into this variable, which again
triggers the surrounding unless-constructs, which are of
the form P unless EXN != null.

1 Gerard Holzmann introduced a special -J (for Java) option in
SPIN to interpret unless from inside-out rather than from outside-
in, in order to make it useful for this translation.

3.3 Lessons Learned

JPF1 was considered a successful tool, achieving atten-
tion from various research groups. The tool was applied
to a game server consisting of 1400 lines of Java code in
16 classes [34]. Although the example was not very big, it
was non-trivial, and not written with formal verification
in mind. A suspicion about a deadlock in the system was
confirmed using JPF1. The tool was also applied to an-
alyze the Remote Agent after it deadlocked in space, as
described in [28]. In this case the space craft engineers at
JPL in Los Angeles informed us that a deadlock had oc-
curred and challenged us if we could find the error using
model checking. We did find the error, however discov-
ering it though code review since we had seen it before
as described in Section 2. However, JPF1 was used to
confirm that it was an error.

It was clearly felt that smaller Java programs of up
to 2000 lines of code could be handled with this kind
of technology2. This could either mean that the tech-
nology was well suited for unit testing, or perhaps for
testing even larger systems using abstraction before the
application of the tool. However, the tool itself had some
drawbacks concerning its applicability. As described ear-
lier, although a considerable subset of Java was trans-
lated, not all was translated, and in particular not the
pre-defined Java library. It was regarded as impractical
to translate the library using JPF1 (even if we had the
sources). Hence, a program would have to be modified in
order to fit the well-formedness criteria of the translator
if it used the library, and most Java programs do. Also,
there were other translation omissions, such as recursion,
that seemed hard to capture considering the then exist-
ing translation framework. In general, it was the percep-
tion that the closer one got to cover 100% of Java, the
harder it became to extend the translator. As it turned
out, working at the byte code level would solve all these
problems, without costing a big loss of efficiency.

4 The DEOS Case Study

In 1998 Honeywell Technology Center approached the
ASE group with a request to investigate techniques that
would be able to uncover errors that testing is not well
suited to catch [43]. The next generation of avionics plat-
forms will shift from federated system architectures to
Integrated Modular Avionics (IMA) where all the soft-
ware runs on a single computer with an operating sys-
tem ensuring time and space partitioning between the
different processes. For certification of critical flight soft-
ware the FAA requires that software testing achieves
100% coverage with a structural coverage measure called

2 Evidently, the complexity of a program cannot be purely mea-
sured in terms of lines of code, but rather one has to consider the
amount of interleaving possible between threads



6 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

Modified Condition/Decision Coverage (MC/DC). Hon-
eywell was concerned that 100% structural coverage would
not be able to ensure that behavioral properties like
time-partitioning will be satisfied. In particular, they
developed a real-time operating system, called DEOS,
where an error in the time partitioning of the O/S was
not uncovered by testing. As an experiment the ASE
group undertook the challenge of finding this error with
a model checker without knowing what it was, where it
was, or even, how to check for it. In a kick-off meeting
Honeywell visited the ASE group and discussed the ba-
sic functionality of DEOS, and subsequently produced a
slice of the O/S that contained all the code required to
show the error. The code that was analyzed was 1500
lines of C++ code (full DEOS is 10000 lines of code).

Since we didn’t have a model checker that could take
C++ as input we were forced to again translate the code
to a suitable model checker’s input notation. However,
unlike with the Remote Agent we decided to do a me-
thodical 1-to-1 mapping between the code and the model
checker input, so that we could avoid first understand-
ing all of the program. We again chose the SPIN model
checker since the PROMELA language was the closest
model checker input to a real programming language,
like C++. The translation scheme we used was based on
the Java PathFinder 1 approach for dealing with object
oriented programs (see Section 3).

The error was found in 3 man-months work: divided
between 1 man-month translating the C++ code to
PROMELA and 2 man-months finding the error. In the
Remote Agent case it took 3 man-months to translate
the code, and two man-weeks to do the analysis. This
difference can easily be explained by the differences in
the two systems: one system was nearing the end of its
design cycle, written to be certified, tested thoroughly
and contained only one very subtle error (DEOS), the
other was in the middle of its development cycle, written
in a semi-research environment, tested by the developers
and contained a number of errors (Remote Agent).

The analysis of the DEOS system was very well re-
ceived by Honeywell and subsequently the DEOS system
became the focus of a number of research efforts [43,50,
17]. Honeywell proceeded in creating their own model
checking team to analyze future DEOS enhancements as
well as the applications to run on top of DEOS [7]. Hon-
eywell is continuing to extend the DEOS PROMELA
model to support verification of more complex versions
of DEOS.

4.1 Lessons Learned

From a research perspective the work on DEOS validated
our hypothesis that real programs can be analyzed di-
rectly, however DEOS also showed us some other prob-
lems:

– Model checking programs directly shifts the burden
of work from the translation of the code to the model
checker’s input to the analysis of the code.
– Typically the translation from code to model checker

involves some ad-hoc abstraction and slicing of
the code, that makes the model checking more
efficient.

– When this translation is done 1-to-1 it means
much of this clever encoding that was previously
done by the human translator now needs to be
done by clever tools with minimal human input.

– Creating an environment for the program to execute
in during model checking can be very challenging
– Model checkers can only analyze closed systems

hence any system to be analyzed must be supplied
with an environment to drive it. This is analogous
to creating a test-driver and selecting test cases
to support testing.

– Creating an environment for DEOS to show the
error occurring took the most time in the DEOS
model checking (2 man-months).

4.2 Related Paper in this Special Section

Traditionally the SPIN workshop has had a strong focus
on the use of SPIN in real-world case studies - similar to
the DEOS case study described here. In keeping with this
tradition the paper by Brinksma, Mader and Fahnkar,
entitled Verification and Optimization of a PLC Con-
trol Schedule describes the use of SPIN (as well as UP-
PAAL [39]) for the analysis of a programmable logic con-
troller system. What makes this contribution novel is
that firstly the PLC controller is a real-time system and
SPIN doesn’t support real-time directly (the paper also
describes a comparison study with UPPAAL that does
support real-time), and secondly, that not only correct-
ness properties of the controller are considered but also
optimization issues in the use of the controller. One of
the contributions of this paper is the use of variable time
advance for handling real-time in SPIN, we adopted this
approach also in the analysis of DEOS.

5 Java PathFinder 2

5.1 Rationale

As pointed out in Section 3 the Java Pathfinder 1 (JPF1)
model checker was highly successful, but had a num-
ber of drawbacks that limited its effectiveness. Essen-
tially the main reason for this was the translation based
approach adopted: although SPIN is a very powerful
model checker and the PROMELA language very expres-
sive, the mapping between Java and PROMELA is not
straight forward. Java PathFinder 2 (henceforth JPF2)
was developed to address the shortcomings of JPF1 (see
Section 3):



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 7

1. Handle all the language features of Java
2. Handle Java libraries
3. Allow more flexible approaches to model checking

Java programs
The major design decision for JPF2 was to base it on

a custom-made Java Virtual Machine (JVM) that could
execute all Java bytecodes. This addressed issues 1 and 2
from above, since all of Java could now be model checked
and also all Java libraries. We addressed the third issue
by designing JPF2 in a modular fashion in order to allow
many different search strategies to be easily integrated
into the model checker.

A number of different research groups have worked on
Java model checkers, but most of these have been based
on the translation approach as used for JPF1 [11,9]. To
date, JPF2 is still the only model checker that can handle
all the language features of Java. The only other custom-
made model checkers that address real programming lan-
guages are, dSPIN [12] an extension of SPIN that can
handle dynamic memory creation and functions, the new
version of SPIN that can handle a subset of C, and the
SLAM model checker [1] that checks reachability prop-
erties of sequential C programs.

5.2 Design and Implementation

JPF2 is written in Java which made the development of
a custom-made JVM quite easy - one could exploit the
fact that we were doing “Java-in-Java” by allowing the
underlying JVM to handle the implementation of some
of the tricky bytecodes such as floating point division
(FDIV). We believe that since we wrote JPF2 in Java,
it contributed to the fact that a prototype system that
had similar functionality as JPF1, was completed in only
3 man-months.

JPF2 is an explicit-state model checker which means
it enumerates each reachable system state from the ini-
tial state and in order to not redo work (and therefore
terminate) it is required to store each reached state.
When analyzing a Java program each state can be very
large and thus require much memory to store, hence re-
ducing the size of systems that can be handled during
model checking. This was the fundamental problem that
had to be solved for JPF2 to work. Others considered
this problem too hard and developed so-called state-less
model checkers (i.e. they don’t store states and there-
fore do a partial state-space search) [20]. In JPF2 this
problem is solved by using novel state-compression tech-
niques [41] that reduce the memory requirements of the
model checker by an order of magnitude. Another novel
feature of JPF2 is the use of symmetry reduction tech-
niques to allow states that are the same modulo where
an object is stored in memory to be considered equal
[41]. Since, object-oriented programs typically make use
of many objects, this symmetry reduction often allows
an order of magnitude less states to be analyzed in a
typical program.

JPF2 uses the BANDERA [9] toolset for specifying
the properties to be analyzed, the display of the error-
path if one exists, as well as for certain forms of abstrac-
tions and slicing. BANDERA supports the specification
of predicates within Javadoc comments that can be used
to check linear temporal logic (LTL) behavioral proper-
ties as well as pre- and postconditions for methods. To
handle LTL properties JPF2 has a front-end translator
from LTL to Büchi-automata [19] that is highly opti-
mized to produce succinct automata. The JPF2 model
checking algorithm then checks whether all program be-
haviors comply with the behaviors described by the au-
tomata, using a highly optimized algorithm based on the
work presented in [51].

JPF2 also supports distributed memory model check-
ing, where the memory required for model checking is
distributed over a number of workstations [41]. Although
this technique requires an additional time-overhead due
to the sending of messages over a network, it allows ex-
amples to be analyzed that previously would not fit in
the memory of one workstation. The crucial factor for
the success of distributed model checking in this fash-
ion is how to partition the memory across the different
workstations — in [41] we investigated a number of par-
titioning schemes and found that dynamic partitioning
(partitions evolve during model checking rather than be-
ing statically fixed at initialization) worked best.

5.3 Lessons Learned

JPF2 has been successfully used in a number of projects,
most notably the DEOS error (from Section 4) was redis-
covered in a Java translation of the original code. More
recently, 7000 lines of code from a Mars rover was suc-
cessfully analyzed. The JPF2 system was made available
to the user community via a web download in Febru-
ary 2001 and since then more than 100 organizations
have registered to use the tool. More importantly, JPF2
has had the desired effect of becoming a vehicle for re-
search on analyzing programs with model checking: we
have close collaborations with the BANDERA group at
Kansas State University as well as other groups at CMU,
Stony Brook, Minnesota, Freiburg and Liverpool Univer-
sities.

The development of JPF2 was the culmination of 3
years of research in the application of model checking to
software within the ASE group. In many ways however it
is the stepping stone for the future: instead of worrying
about how to encode a program in some model checking
notation, one can rather think of the behavioral proper-
ties one would like to check, which parts of the program
to abstract to make the model checking more tractable,
and how to improve model checking for specific classes
of programs. These issues will all be discussed in the
following section.



8 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

5.4 Related Papers in this Special Section

As mentioned in Section 5.2 JPF2 supports LTL model
checking through the use of the BANDERA toolset to
describe the properties to be checked on the Java pro-
grams. In this special section the language for describing
these properties, namely the BANDERA Specification
Language (BSL), is outlined in detail in the paper by
Corbett, Dwyer, Hatcliff and Robby, entitled Express-
ing Checkable Properties of Dynamic Systems: the BAN-
DERA Specification Language. The BSL language has
recently been fully integrated with JPF2.

An important component of explicit-state model check-
ing is how to check temporal properties efficiently. JPF2,
as well as SPIN, uses the so-called automata-theoretical
approach where each LTL (linear time temporal logic)
formula is translated to a Büchi automaton before model
checking commences. This translation from LTL to Büchi
automata has been the focus of much research, and a
number of tools for doing such a translation exist (in-
cluding the one used in JPF2 [19]). However, doing this
translation efficiently is non-trivial and therefore also
error-prone. The second paper, by Heikki Tauriainen and
Keijo Heljanko, entitled Testing LTL Formula Transla-
tion into Büchi Automata, deals with this, somewhat
overlooked, area of the correctness of LTL to Büchi trans-
lators. We will soon by relying on their technique also to
the test the LTL to Büchi translator used within JPF2.

6 Technologies for Software Model Checking

For model checking to make an impact on the quality of
programs produced the amount of human effort in oper-
ating the tools should be kept to a minimum. With JPF2
we have reduced the amount of effort considerably since
a translation phase is no longer required. However, be-
cause the automated translation preserves all the details
of the software implementation, the model checking itself
is more difficult. The reason is that manual translation,
typically involves significant optimization and abstrac-
tion of the system. Therefore, to truly reduce the amount
of manual effort and place model checking into the de-
velopment loop, we need tools to support the typical
optimizations and abstractions previously done during
translation. In general, the goal is to reduce the state-
space of the system that the model checker needs to an-
alyze, providing both scalability and responsiveness.

6.1 Abstraction

When using abstraction techniques to reduce the number
of states of a system one can either remove some behav-
iors present in the original system (under-approximations)
or introduce new behaviors not present in the original
(over-approximation).

6.1.1 Under-approximations

Under-approximation of the behaviors is by far the most
common form of manual abstraction before model check-
ing. Under-approximation doesn’t preserve correctness,
i.e. if the abstract system satisfies a behavioral property
then it doesn’t follow that the original system does as
well. Under-approximation are however good for find-
ing errors, since an error in the abstract system implies
the same error in the original [50]. JPF2 was built with
the view that it should cover the spectrum of analysis
techniques from testing, where only one execution of a
program is analyzed, to model checking where all the
paths are analyzed, hence JPF2 supports a number of
techniques for doing under-approximations during model
checking (we highlight two below).

Race-Guided - where a race-analysis is done on the pro-
gram first and if a race violation is found the model
checker focuses on the threads involved to see what
the race violation might lead to. We used this tech-
nique to find the error in the Java translation of the
Remote Agent error that occurred during flight [52].

Heuristic Search - using techniques from AI we can ap-
ply either general or program specific heuristics to
guide the search towards likely errors. For example
to find deadlocks we use a heuristic that tries to
maximize blocked threads - this heuristic found the
Remote Agent deadlock within seconds whereas in
exhaustive mode the model checker will fail due to
memory limitations. We also developed a heuristic for
finding problems that are due to thread-interleaving
and lastly, one based on trying to increase structural
testing coverage [22]

6.1.2 Over-approximations

With this technique one represents a group of states in
the concrete (original) program by a small finite set of
states in the abstract program — and can therefore lead
to huge state-space reductions. This form of abstrac-
tion is inspired by abstract interpretation as first used
in static program analysis [10], where the data domain
(type) of a variable is replaced by an abstract type over
which all concrete operations are then interpreted. Note
that this type of abstraction causes more behaviors to be
present in the abstract program than in the original pro-
gram. The fact that more behaviors are possible in the
abstract program means that if a behavioral property ex-
pressed in LTL holds in the abstract it also holds in the
concrete, but if an LTL property fails in the abstract
then it might not fail in the concrete (since it might
fail due to a behavior found in the abstract that is not
present in the concrete). Another very popular form of
over-approximations is called predicate abstraction [21,
1]: here one replaces a predicate used in the program
by a boolean variable and all updates to the variables



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 9

in the predicate are changed to updates of the boolean
variable.

JPF2 supports predicate [50] and BANDERA sup-
ports type-based abstraction [17]. In order to handle
over-approximations of the program behaviors we have
extended Java with two special method calls that signals
nondeterministic choice (random(n) that return values
between 0 and n inclusive and randomBool() that re-
turn true or false) — whenever the model checker en-
counters these methods it will nondeterministically try
all possible results for each call.

Predicate Selection The first problem one encoun-
ters with the application of over-approximations in prac-
tice is how to select the parts of the program to abstract
— typically this requires human intervention. In BAN-
DERA type-based abstraction can be done automati-
cally though, by doing a backward dependency analysis
of the program from all points that directly influence the
temporal property to be checked, to determine a set of
variables that most influence program behavior (with re-
spect to the property to be checked) and these variables
then become candidates for abstraction [17]. Although
predicate abstraction can be applied automatically too,
by selecting all predicates in the program and in the
property, we have found that in practice this leads to too
many spurious counter-examples (i.e. too many behav-
iors not present in the original that then lead property
violations).

Abstract Program Creation Both predicate and
type-based abstraction can be applied either during or
before model checking. However in practice, the calcu-
lations required to determine the abstract state of a
program is too slow to be done during model checking,
and therefore we only use abstract program creation be-
fore model checking in JPF2 and BANDERA. In order
to calculate an abstract operation, given an abstraction
mapping (type or predicate) and a concrete operation,
one requires an automated theorem prover (i.e. a set of
decision procedures for the domain). For predicate ab-
straction we use the Stanford Validity Checker (SVC)
[2] to calculate abstract statements and for type-based
abstraction BANDERA uses PVS [42]. Although most
of the abstraction calculations are done before model
checking, object-oriented programs are particularly chal-
lenging for predicate abstraction, since predicates may
relate variables from different classes that during exe-
cution can have a number of instantiations. Predicate
abstraction is typically done in a static setting, whereas
with object-oriented programs predicates can be created
dynamically during execution when new objects are in-
stantiated. JPF2 therefore supports mechanism to allow
predicates to be created on-the-fly during model check-
ing when predicates are specified across different classes
[50].

Result Interpretation The biggest drawback of
over-approximation based abstractions are that errors
found can be spurious (i.e. not present in the original).

The more aggressive the abstraction, i.e. the bigger state-
space reduction one achieves, the more likely it will be
that a spurious error will occur. It is a well known fact
that users of systems where spurious errors can be re-
ported are more likely to complain about the spurious
errors than if it reported no errors (supported by data
presented by Microsoft after using their static analysis
tool PREfix for discovering run-time errors [49]). For a
program model checker using abstraction to be of prac-
tical use it is therefore vitally important that spurious
errors be eliminated. JPF2 supports a novel technique
for achieving this goal: as a first-pass after abstraction it
only searches the parts of the abstract program’s state-
space that it knows contains no behaviors that are not
also part of the concrete program [47]. One can view
this as doing a on-the-fly under-approximation of the
state-space generated from doing an over-approximation
of the original program. This technique has been remark-
ably successful: both the Remote Agent and DEOS ex-
amples’ bugs can be found using abstraction and this
search technique.

Abstraction Refinement An abstraction can be
too coarse in certain situations, i.e. a spurious error can-
not be removed unless the abstraction is refined. JPF2
supports a very practical approach to determining where
a refinement is necessary: the path reported by JPF2
as a counter-example over the abstract program is exe-
cuted over the concrete and where the path diverges (if
it doesn’t diverge then of course the abstract path is not
spurious) the predicates at that point are likely candi-
dates to refine the abstraction. Refinement then proceeds
by adding these predicates to the predicate abstraction
and repeating the abstract program creation. This ap-
proach was first demonstrated in the Invest tool [3].

6.2 Slicing

Slicing is a technique that yields a precise abstraction
(neither over nor under approximation) of the program
behavior with respect to the property being analyzed
[14]. A sliced program yields a smaller state space than
the original un-sliced program, and hence, slicing allows
the model checker to handle larger programs. There are
two important aspects to selecting statements that will
be eliminated. First, these statements should not appear
on the dependence graphs of the statements containing
variables that are terms of the property being checked.
Second, the sliced program should still be executable
(since JPF2 is an explicit-state model checker). Slicing
in JPF2 is provided through the slicing capability of the
BANDERA toolset [9]. In BANDERA, slicing is per-
formed based on six types of dependencies [24]: three
intra-thread dependencies which are usually found in se-
quential programs, namely data, control and divergence
dependencies and three types of dependencies (interfer-
ence, synchronization, and ready dependencies) that cap-
ture concurrency issues.



10 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

6.3 Partial-Order Reduction

The goal of partial order reduction is to exploit the com-
mutativity of concurrent transitions to reduce the state
space that needs to be explored by a model checker. This
technique, which is well described in [5], relies on the
concept of independent transitions. Two transitions are
independent if the execution of one does not disable the
other (and vice versa) (enabledness condition) and they
result in the same state regardless of their execution or-
der (commutativity condition). JPF2 relies on a stronger
concept based on safe transitions [38]. In essence, a tran-
sition is safe if it is independent on any transition of any
other thread. A partial order reduction scheme that se-
lects only safe transitions, when some exist, for explo-
ration is guaranteed to yield correct results.

From a static analysis point of view, identifying safe
statements can be reduced to the problem of identifying
objects that can escape the thread where they have been
created. Indeed, if we can identify such objects we can
identify objects that can be shared by different threads.
Then, unsafe statements are those that access shared
objects, as well as those that correspond to entering a
monitor in Java (these ones are easily identifiable syntac-
tically). Our “safe statement” analysis is essentially an
aliasing analysis. In a first phase, we build the program
call graphs associated with each thread. As we build
these graphs, we identify some escaping objects (they
are passed as arguments to the class constructor of the
thread). It is easy to realize that all other escaping ob-
jects are aliased to the escaping objects identified in the
first phase. Therefore, the second phase consists of an
aliasing analysis. Note that we do not have to compute
aliases created by considering all interleavings (which is
quite costly). Indeed, all escaping objects are identified
by computing “intra-thread” aliases. This means that
the complexity of our analysis is similar to the complex-
ity of an aliasing analysis for sequential programs.

6.4 Environment Generation

An explicit-state model checker, such as JPF2, requires
a closed system to analyze, i.e. a system and the envi-
ronment it needs to operate in must be provided before
model checking [16]. Often, however, the environment is
not available and it needs to be created — during testing
an analogous problem exists when a test-harness must be
created, however a few subtle but important differences
exist. For model checking it is important that all rele-
vant environment behavior be present, whereas in testing
a subset of all possible test-cases will be tested. Know-
ing which environment actions are relevant is however
only possible with domain knowledge, something not al-
ways possible if the domain experts are not involved in
the model checking (as is almost always the case in a
research environment).

A common approach favored during model checking
of systems without a known environment is to create the
most aggressive environment, i.e. one that can perform
any legal action at any possible time — often referred
to as the universal environment [15]. If a property holds
for a system composed with its most aggressive environ-
ment then the system will be correct when used in any
environment. This is similar to the case where an over-
approximation is done during abstraction. Unfortunately
it also has the same problem as over-approximation in
abstraction: spurious errors may result since the uni-
versal environment allows behaviors for which the sys-
tem was not designed. A novel approach to remove such
spurious behaviors is by filtering unwanted behaviors
from the environment using LTL properties augmented
with filter properties [15]. This technique was success-
fully used to create the DEOS system’s environment [46]
in only a few days rather than the 2 months used creat-
ing the environment manually.

6.5 Related Papers in this Special Section

Two of the papers in this special section are related to
JPF2 as well as the state-space reduction techniques de-
scribed in this section.

Firstly, the paper by Scott Stoller entitled Model-
Checking Multi-Threaded Distributed Java Programs ex-
ploits the specific thread synchronization facilities in Java
to optimize model checking by improving partial-order
reductions (see Section 6.3). This work is illustrated within
the context of doing state-less model checking (see Sec-
tion 5.2) and is also implemented within JPF2.

Curbing the omnipresent state-explosion problem has
been a fruitful line of research within the SPIN com-
munity as well as the model checking field in general.
One popular technique for combating the state-explosion
problem, not highlighted in this section, is to exploit
symmetry reductions within the system that is being an-
alyzed. The paper by Bosnacki, Dams and Holenderski,
entitled Symmetric SPIN, introduces a symmetry reduc-
tion package for SPIN. The significance of this work lies
not only in the theoretical contributions, but also in the
fact that the research ideas were implemented within
SPIN and is supported by empirical data. As mentioned
in Section 5.2 JPF2 also supports symmetry reductions,
but only for the objects instantiated within the Java pro-
gram, whereas this work also handles symmetries in the
process structure.

7 Java PathExplorer

7.1 Rationale

Since the Java PathFinder attempts to explore the en-
tire state space of a Java program, storing the states



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 11

explicitly, it naturally suffers from the classical state
space explosion problem. For very large applications one
may therefore want to apply complementary techniques
more closely related to traditional testing. Testing can
be characterized as: ”execute the program with different
test-cases and observe each execution, comparing it to
the expected behavior”. Although we believe that the
area of automated test-case generation has great poten-
tial, we think that its maturity is still at least 5 years
out in the future. Also, providing a general, application
independent, framework for automated test-case gener-
ation is not obvious. Engineers at JPL, in addition, ex-
pressed scepticism that such automation could be done,
suggesting that it always at the end requires some engi-
neer to sit down and think out what the test case should
be. Our goal was to develop a technology that had a
chance of being adopted by space craft designers within
a relatively short time horizon (a couple of years). Our
interest hence was turned on the observation part of the
equation. The question was:

How much information can be extracted about a
program from observing a single execution trace?

It was our intention to develop a technology that could
be applied automatically and to large full-size applica-
tions, with minimal modification to the code. The SPIN
2000 workshop hosted two invited talks on two com-
mercial tools in this category: Temporal Rover [13] and
Visual Threads [23]. Temporal Rover monitors the exe-
cution of a program, and checks its behavior against a
collection of temporal logic formulae written in a tempo-
ral logic. Formulae are written in the code as comments,
and then translated into formula checking code, which is
executed as assertions. Visual threads performs various
concurrency error analysis, such as deadlock and data
race analysis. In particular, it implements the Eraser al-
gorithm [48] for detecting data races. It was decided to
build a tool, Java PathExplorer (JPaX) [31–33], which
combined the functionality of these two tools, and in ad-
dition added new functionality. The Java PathExplorer
analyzes (explores) single executions traces.

Visual Threads is tightly coupled to Compaq’s Alpha
microprocessors, and in addition does not work properly
on Java programs. Hence, one goal was to port some of
the technology to work for Java. The Temporal Rover
required manual instrumentation of the code. We de-
cided that automated instrumentation is desired, and
hence focused on providing that capability. In Temporal
Rover one can for example state a property over a set of
program variables. One then has to insert the property
at each update of these variables manually. With auto-
mated instrumentation capability, the property checks
will be inserted automatically at all updates. This work
was also inspired by the MAC tool [40], which performs
automated instrumentation.

7.2 Design and Implementation

Two kinds of event analysis are currently implemented.
Logic based monitoring consists of runtime checking

formal requirement specifications written in high level
logics by users of the system. Logics are currently imple-
mented in Maude [6], a high-performance system sup-
porting both rewriting logic and membership equational
logic. One can naturally and easily define new logics
in Maude, such as for example temporal logics [44], to-
gether with their finite trace operational semantics. Cur-
rently, JPaX supports two built-in logics, future time
and past time linear temporal logic.

Error pattern analysis consists of analyzing one ex-
ecution trace using various error detection algorithms
that can identify error-prone programming practices that
may potentially lead to errors in some executions. Two
such algorithms focusing on concurrency errors have been
implemented in JPaX, one for deadlocks and the other
for data races: the Eraser algorithm [48]. It is important
to note, that a deadlock or data race potential does not
need to actually occur in order for its potential to be de-
tected with these algorithms. This is what makes them
very useful in practice. As an example, the deadlock algo-
rithm works by building a graph of locks acquired during
the execution, building a edge from a lock L1 to a lock
L2 if some thread T holds L1 while acquiring L2. The
lock graph accumulates all such updates and a warning
is issued if it eventually becomes cyclic.

An instrumentation module performs a script-driven
automated instrumentation of the program to be ob-
served. The instrumented program, when run, will emit
relevant events to an observer, potentially running on a
different computer, in which case the events are trans-
mitted over a socket. The Java byte code instrumenta-
tion is performed using the powerful Jtrek Java byte code
engineering tool [8] from Compaq. Jtrek makes it possi-
ble to easily read Java class files (byte code files), and
traverse them as abstract syntax trees while examining
their contents, and insert new code.

7.3 Lessons Learned

At the time of writing, PathExplorer is being applied
to a couple of case studies at NASA Ames, with so far
promising results. Deadlocks and data races have for ex-
ample been located. Deadlock and data race analysis,
however, is limited, evidently, to only that kind of errors.
So although the technology is powerful, it only covers a
smaller fraction of the errors usually contained in soft-
ware. Temporal logic monitoring can be used to check a
broader class of errors, although in this case an error has
to actually occur in order to be detected. Runtime moni-
toring can potentially be combined with model checking,
for example as described in our paper in the SPIN 2000
proceedings [27]. Here deadlock and data race analysis



12 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

has been integrated into the Java PathFinder tool in
such a way that one can first run the tool in simulation
mode where deadlock and data race potentials are de-
tected in a very scalable manner, whereafter the model
checker is started to focus in on the threads involved in
the warnings. A major issue that current case studies
demonstrate is that it is difficult for software engineers
to generate requirements that a software system should
satisfy, even in English. Hence, it is interesting that for-
malizing the properties, once provided informally, is not
the main problem.

8 Summary

In the previous sections we tried to give a flavor of the re-
search within the Automated Software Engineering group
at NASA Ames, that led to the decision to focus the
7th SPIN Workshop on model checking software. The
sections related to the different research activities de-
scribed were given in a roughly chronological order of
when the work started. The concept of the workshop
was formulated in late 1999, which would place it some-
where in the early stages of the JPF2 (Section 5) and
Java PathExplorer (Section 7) development. These two
projects as well as the work on supplementary technolo-
gies for model checking (Section 6) are very much still
ongoing.

A number of other projects (in the ASE group) in
the general field of software verification and validation
have started since the SPIN 2000 workshop, but since
these are not directly related to the workshop we only
briefly mention them here:

– We use the PolySpace Verifier [45] to check for run-
time errors in Space Flight software, and have found
errors in Mars PathFinder code as well as in code
to run biological experiments on the International
Space Station. PolySpace is a commercially available
tool that uses static analysis techniques to discover
errors.

– In a joint project with the University of Minnesota we
are using JPF2 for test-case generation [35]. Within
the context of this work we are currently extending
JPF2 with the capability to do symbolic execution.

We would like to emphasize that we regard program
analysis as a complementary technique to design anal-
ysis, and hopefully the two approaches eventually can
coexist within a unified framework.

References

1. T. Ball, A. Podelski, and S. Rajamani. Boolean and
Cartesian Abstractions for Model Checking C Programs.
In Proceedings of TACAS01: Tools and Algorithms for
the Construction and Analysis of Systems, LNCS, Gen-
ova, Italy, April 2001.

2. C. Barrett, D. Dill, and J. Levitt. Validity Checking
for Combinations of Theories with Equality. In For-
mal Methods In Computer-Aided Design, volume 1166
of LNCS, pages 187–201, November 1996.

3. Saddek Bensalem, Yassine Laknech, and Sam Owre. In-
vest: A Tool for the Verification of Invariants. In Alan
Hu and Moshe Vardi, editors, CAV’98: 7th Interna-
tional Conference on Computer Aided Verification, vol-
ume 1427 of LNCS, pages 505–510, 1998.

4. Tierry Cattel. Modeling and Verification of sC++ Ap-
plications. In Proceedings of TACAS’98: Tools and Al-
gorithms for the Construction and Analysis of Systems,
volume 1384 of Lecture Notes in Computer Science, pages
232–248, Lisbon, Portugal, April 1998. Springer.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

6. Manuel Clavel, Francisco J. Durán, Steven Eker, Patrick
Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and José F.
Quesada. The Maude system. In Paliath Narendran
and Michaël Rusinowitch, editors, Proceedings of the 10th
International Conference on Rewriting Techniques and
Applications (RTA-99), volume 1631 of Lecture Notes
in Computer Science, pages 240–243, Trento, Italy, July
1999. Springer-Verlag. System Description.

7. Darren Cofer, Eric Engstrom, Nicholas Weininger, John
Penix, and Willem Visser. Using model checking for ver-
ification of partitioning properties in integrated modular
avoinics. In Proceedings of the Digital Avionics Systems
Conference, 2000.

8. Seth Cohen. Jtrek. Compaq,
http://www.compaq.com/java/download/jtrek.

9. James Corbett, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Shawn Laubach, and Hongjun Zheng.
Bandera : Extracting Finite-state Models from Java
Source Code. In Proceedings of the 22nd International
Conference on Software Engineering, Limeric, Ireland.,
June 2000. ACM Press.

10. P. Cousot and R. Cousot. Abstract Interpretation
Frameworks. Journal of Logic and Computation,
4(2):511–547, August 1992.

11. C. Demartini, R. Iosif, and R. Sist. A Deadlock Detection
Tool for Concurrent Java Programs. Software Practice
and Experience, 29(7):577–603, July 1999.

12. C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynamic
Extension of SPIN. In Proceedings of the 6th SPIN Work-
shop, volume 1680 of LNCS, 1999.

13. Doron Drusinsky. The Temporal Rover and the ATG
Rover. In Klaus Havelund, John Penix, and Willem
Visser, editors, SPIN Model Checking and Software Ver-
ification, volume 1885 of Lecture Notes in Computer Sci-
ence, pages 323–330. Springer, 2000.

14. M. B. Dwyer and J. Hatcliff. Slicing software for model
construction. In Olivier Danvy, editor, Proceedings of the
1999 ACM Workshop on Partial Evaluation and Program
Manipulation (PEPM’99), January 1999. BRICS Notes
Series NS-99-1.

15. M. B. Dwyer and C. S. Păsăreanu. Filter-based model
checking of partial systems. In Proceedings of the Sixth
ACM SIGSOFT Symposium on Foundations of Software
Engineering, November 1998.

16. M. B. Dwyer and C. S. Păsăreanu. Model check-
ing generic container implementations. In LNCS 1766.



Klaus Havelund, Willem Visser: Program Model Checking as a New Trend 13

Generic Programming—Proceedings of a Dagstuhl Sem-
inar, 1998.

17. Matthew Dwyer, John Hatcliff, Roby Joehanes, Shawn
Laubach, Corina Pasareanu, Robby, Willem Visser, and
Hongjun Zheng. Tool-supported Program Abstraction
for Finite-state Verification. In Proceedings of the 23rd
International Conference on Software Engineering (to
appear), Toronto, Cananda., May 2001. ACM Press.

18. Dimitra Giannakopoulou and Klaus Havelund.
Automata-Based Verification of Temporal Properties on
Running Programs. In Proceedings, International Con-
ference on Automated Software Engineering (ASE’01),
pages 412–416. Institute of Electrical and Electronics
Engineers, 2001. Coronado Island, California.

19. Dimitra Giannakopoulouand and Flavio Lerda. From
States to Transitions: Improving translation of LTL for-
mulae to Büchi automata. In Proceedings of the 22nd
IFIP WG 6.1 International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE
2002), Lecture Notes in Computer Science, Houston,
Texas, 2002. Springer.

20. P. Godefroid. Model Checking for Programming Lan-
guages using VeriSoft. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages,
pages 174–186, Paris, January 1997.

21. S. Graf and H. Saidi. Construction of Abstract State
Graphs with PVS. In CAV ’97: 6th International Con-
ference on Computer Aided Verification, volume 1254 of
LNCS, 1997.

22. Alex Groce and Willem Visser. Model checking java pro-
grams using structural heuristics. In Proceedings of the
2002 International Symposium on Software Testing and
Analysis (ISSTA). ACM Press, july 2002.

23. Jerry Harrow. Runtime Checking of Multithreaded Ap-
plications with Visual Threads. In Klaus Havelund, John
Penix, and Willem Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes
in Computer Science, pages 331–342. Springer, 2000.

24. J. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and
H. Zheng. A Formal Study of Slicing for Multi-threaded
Programs with JVM Concurrency Primitives. In Proc.
of the 1999 Int. Symposium on Static Analysis, 1999.

25. K. Havelund, K. G. Larsen, and A. Skou. Formal Ver-
ification of an Audio/Video Power Controller using the
Real-Time Model Checker UPPAAL. In 5th Int. AMAST
Workshop on Real-Time and Probabilistic Systems, num-
ber 1601 in Lecture Notes in Computer Science. Springer-
Verlag, May 1999. Bamberg, Germany.

26. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. For-
mal Modeling and Analysis of an Audio/Video Protocol:
An Industrial Case Study Using UPPAAL. In Proceed-
ings of the 18th IEEE Real-Time Systems Symposium,
pages 2–13, Dec 1997. San Francisco, California, USA.

27. Klaus Havelund. Using Runtime Analysis to Guide
Model Checking of Java Programs. In Klaus Havelund,
John Penix, and Willem Visser, editors, SPIN Model
Checking and Software Verification, volume 1885 of
Lecture Notes in Computer Science, pages 245–264.
Springer, 2000.

28. Klaus Havelund, Michael R. Lowry, SeungJoon Park,
Charles Pecheur, John Penix, Willem Visser, and John L.
White. Formal Analysis of the Remote Agent Before and

After Flight. In Proceedings of the 5th NASA Langley
Formal Methods Workshop, June 2000.

29. Klaus Havelund, Michael R. Lowry, and John Penix. For-
mal Analysis of a Space Craft Controller using SPIN.
IEEE Transactions on Software Engineering, 27(8):749–
765, August 2001. An earlier version occurred in the Pro-
ceedings of the 4th SPIN workshop, 1998, Paris, France.

30. Klaus Havelund and Thomas Pressburger. Model Check-
ing Java Programs using Java PathFinder. Interna-
tional Journal on Software Tools for Technology Trans-
fer, 2(4):366–381, April 2000. Special issue of STTT con-
taining selected submissions to the 4th SPIN workshop,
Paris, France, 1998.

31. Klaus Havelund and Grigore Roşu. Monitoring Java Pro-
grams with Java PathExplorer. In Klaus Havelund and
Grigore Roşu, editors, Proceedings of the First Interna-
tional Workshop on Runtime Verification (RV’01), vol-
ume 55 of Electronic Notes in Theoretical Computer Sci-
ence, pages 97–114, Paris, France, July 2001. Elsevier
Science.

32. Klaus Havelund and Grigore Roşu. Monitoring Programs
using Rewriting. In Proceedings, International Con-
ference on Automated Software Engineering (ASE’01),
pages 135–143. Institute of Electrical and Electronics En-
gineers, 2001. Coronado Island, California.

33. Klaus Havelund and Grigore Roşu. Synthesizing moni-
tors for safety properties. In Tools and Algorithms for
Construction and Analysis of Systems (TACAS’02), vol-
ume 2280 of Lecture Notes in Computer Science, pages
342–356. Springer, 2002. EASST best paper award at
ETAPS’02.

34. Klaus Havelund and Jens Skakkebæk. Applying Model
Checking in Java Verification. In Proceedings of the
6th SPIN Workshop, 1999. In connection with FM99,
Toulouse.

35. M. Heimdahl, S. Rayadurgam, and W. Visser. Specifica-
tion Centered Testing. In Proceedings of the Second In-
ternational Workshop on Automated Program Analysis,
Testing and Verification., Toronto, Canada, May 2001.

36. Gerard J. Holzmann. The Model Checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295,
May 1997. Special issue on Formal Methods in Software
Practice.

37. Gerard J. Holzmann and Margaret H. Smith. A Practical
Method for Verifying Event-Driven Software. In Proceed-
ings of ICSE’99, International Conference on Software
Engineering, Los Angeles, California, USA, May 1999.
IEEE/ACM.

38. G.J. Holzmann and D. Peled. An Improvement in For-
mal Verification. In Proc. FORTE94, Berne, Switzerland,
October 1994.

39. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal
in a Nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, October 1997.

40. Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokol-
sky, and Mahesh Viswanathan. Runtime Assurance
Based on Formal Specifications. In Proceedings of the In-
ternational Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, 1999.

41. Flavio Lerda and Willem Visser. Addressing dynamic
issues of program model checking. In Proc. of the 8th In-
ternational SPIN Workshop, volume 2057 of LNCS 2057.
Springer-Verlag, May 2001.



14 Klaus Havelund, Willem Visser: Program Model Checking as a New Trend

42. S. Owre, J. M. Rushby, and N. Shankar. PVS: A pro-
totype verification system. In Proceedings of the 1th In-
ternational Conference on Automated Deduction (LNCS
607), 1992.

43. J. Penix, W. Visser, E. Engstrom, A. Larson, and
N. Weininger. Verification of Time Partitioning in
the DEOS Scheduler Kernel. In Proceedings of the
22nd International Conference on Software Engineering,
Limeric, Ireland., June 2000. ACM Press.

44. Amir Pnueli. The Temporal Logic of Programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science, pages 46–77, 1977.

45. PolySpace. http://www.polyspace.com.
46. C. S. Păsăreanu. DEOS kernel: Environment modeling

using LTL assumptions. Technical Report NASA-ARC-
IC-2000-196, NASA Ames, july 2000.

47. C.S. Păsăreanu, M.B. Dwyer, and W. Visser. Find-
ing feasible counter-examples when model checking ab-
stracted java programs. In Proceedings of the 7th In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of
LNCS, 2001.

48. Stefan Savage, Michael Burrows, Greg Nelson, Patrik
Sobalvarro, and Thomas Anderson. Eraser: A Dy-
namic Data Race Detector for Multithreaded Programs.
ACM Transactions on Computer Systems, 15(4):391–
411, November 1997.

49. Microsoft Spec and Check Workshop, 2001. http://

research.microsoft.com/specncheck/.
50. W. Visser, S. Park, and J. Penix. Using Predicate Ab-

straction to Reduce Object-Oriented Programs for Model
Checking. In Proceedings of the 3rd ACM SIGSOFT
Workshop on Formal Methods in Software Practice, Au-
gust 2000.

51. W.C. Visser. Efficient CTL∗ Model Checking using
Games and Automata. PhD thesis, Manchester Univer-
sity, June 1998.

52. Willem Visser, Klaus Havelund, Guillaume Brat, and
Seung-Joon Park. Model checking programs. In Proc.
of the 15th IEEE International Conference on Auto-
mated Software Engineering, Grenoble, France, Septem-
ber 2000.


